A106487 Number of leaves in combinatorial game trees.
1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5
Offset: 0
Keywords
Examples
3 = 2^0 + 2^1 = 2^(2*0) + 2^((2*0)+1) encodes the CGT tree \/ which has two terminal nodes, thus a(3)=2. 64 = 2^6 = 2^(2*3), i.e. it encodes the CGT tree \/ .\ which also has two terminal (non-root) nodes, so a(64)=2.
Programs
-
Scheme
(define (A106487 n) (cond ((zero? n) 1) (else (apply + (map A106487 (map shr (on-bit-indices n))))))) (define (shr n) (if (odd? n) (/ (- n 1) 2) (/ n 2))) (define (on-bit-indices n) (let loop ((n n) (i 0) (c (list))) (cond ((zero? n) (reverse! c)) ((odd? n) (loop (/ (- n 1) 2) (1+ i) (cons i c))) (else (loop (/ n 2) (1+ i) c)))))
Comments