A106494 Total number of bases and exponents in GF(2)[X] Superfactorization of n, including the unity-exponents at the tips of branches.
1, 2, 2, 3, 3, 4, 2, 3, 4, 5, 2, 5, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 4, 5, 2, 4, 5, 5, 4, 5, 2, 4, 4, 6, 4, 7, 2, 4, 5, 6, 2, 5, 4, 5, 5, 6, 2, 6, 4, 4, 4, 5, 4, 7, 2, 5, 5, 6, 2, 6, 2, 4, 5, 5, 6, 6, 2, 7, 3, 6, 4, 7, 2, 4, 5, 5, 4, 7, 4, 7, 3, 4, 6, 6, 5, 6, 2, 5, 4, 7, 2, 7, 4, 4, 5, 6, 2, 6, 5, 5, 6, 6
Offset: 1
Keywords
Examples
a(64) = 5, as 64 = A048723(2,6) = A048723(2,(A048723(2,1) X A048723(3,1))) and there are five nodes in that superfactorization. Similarly, for 27 = 5x7 = A048723(3, A048723(2,1)) X A048273(7,1) we get a(27) = 5. The operation X stands for GF(2)[X] multiplication defined in A048720, while A048723(n,y) raises the n-th GF(2)[X] polynomial to the y:th power.
Links
- A. Karttunen, Scheme-program for computing this sequence.
Comments