cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106494 Total number of bases and exponents in GF(2)[X] Superfactorization of n, including the unity-exponents at the tips of branches.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 3, 4, 5, 2, 5, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 4, 5, 2, 4, 5, 5, 4, 5, 2, 4, 4, 6, 4, 7, 2, 4, 5, 6, 2, 5, 4, 5, 5, 6, 2, 6, 4, 4, 4, 5, 4, 7, 2, 5, 5, 6, 2, 6, 2, 4, 5, 5, 6, 6, 2, 7, 3, 6, 4, 7, 2, 4, 5, 5, 4, 7, 4, 7, 3, 4, 6, 6, 5, 6, 2, 5, 4, 7, 2, 7, 4, 4, 5, 6, 2, 6, 5, 5, 6, 6
Offset: 1

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

See comments at A106493.

Examples

			a(64) = 5, as 64 = A048723(2,6) = A048723(2,(A048723(2,1) X A048723(3,1))) and there are five nodes in that superfactorization. Similarly, for 27 = 5x7 = A048723(3, A048723(2,1)) X A048273(7,1) we get a(27) = 5. The operation X stands for GF(2)[X] multiplication defined in A048720, while A048723(n,y) raises the n-th GF(2)[X] polynomial to the y:th power.
		

Crossrefs

a(n) = A106491(A106445(n)). a(n) = A106493(n)+A106495(n).