cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106510 Expansion of (1+x)^2/(1+x+x^2).

Original entry on oeis.org

1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Row sums of the Riordan array ((1+x)/(1+x+x^2),x/(1+x)), A106509.
Equals INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Oct 10 2008

Examples

			1 + x - x^2 + x^4 - x^5 + x^7 - x^8 + x^10 - x^11 + x^13 - x^14 + ...
		

Programs

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j)
a(n) = A049347(n-1) = A102283(n) if n >= 1. - R. J. Mathar, Aug 07 2011
From Michael Somos, Oct 15 2008: (Start)
Euler transform of length 3 sequence [ 1, -2, 1].
a(n) is multiplicative with a(3^e) = 0^e, a(p^e) = 1 if p == 1 (mod 3), a(p^e) = (-1)^e if p == 2 (mod 3).
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v) = 4 - 3*v - u * (4 - 2*v - u). (End)
a(-n) = a(n). a(n+3) = a(n) unless n = 0 or n = -3.
a(n) = Sum_{k=0..n} A128908(n,k)*(-1)^(n-k). - Philippe Deléham, Jan 22 2012

Extensions

Edited by M. F. Hasler, May 07 2018