A106513 A Pell-Pascal matrix.
1, 2, 1, 5, 3, 1, 12, 8, 4, 1, 29, 20, 12, 5, 1, 70, 49, 32, 17, 6, 1, 169, 119, 81, 49, 23, 7, 1, 408, 288, 200, 130, 72, 30, 8, 1, 985, 696, 488, 330, 202, 102, 38, 9, 1, 2378, 1681, 1184, 818, 532, 304, 140, 47, 10, 1, 5741, 4059, 2865, 2002, 1350, 836, 444, 187, 57, 11, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 5 3 1 3: 12 8 4 1 4: 29 20 12 5 1 5: 70 49 32 17 6 1 6: 169 119 81 49 23 7 1 7: 408 288 200 130 72 30 8 1 8: 985 696 488 330 202 102 38 9 1 9: 2378 1681 1184 818 532 304 140 47 10 1 10: 5741 4059 2865 2002 1350 836 444 187 57 11 1 ... Reformatted and extended. - _Wolfdieter Lang_, Oct 05 2014 ----------------------------------------------------- Recurrence from the Z-sequence (see the formula above) for T(0,n) in terms of the entries of row n-1. For example, 29 = T(4,0) = 2*12 + 1*8 + (-1)*4 + 1*1 = 29. - _Wolfdieter Lang_, Oct 05 2014
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[ (&+[Binomial(n+1, 2*j+k+1)*2^j: j in [0..Floor((n+1)/2)]]) : k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 05 2021
-
Mathematica
T[n_, k_]= Sum[Binomial[n+1, 2*j+k+1]*2^j, {j, 0, Floor[(n+1)/2]}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 05 2021 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0): return lucas_number1(n+1, 2, -1) else: return T(n-1,k-1) + T(n-1,k) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 05 2021
Formula
Riordan array (1/(1-2*x-x^2), x/(1-x)).
Number triangle T(n,0) = A000129(n+1), T(n,k) = T(n-1,k-1) + T(n-1,k).
T(n,k) = Sum_{j=0..floor((n+1)/2)} binomial(n+1, 2*j+k+1)*2^j.
Sum_{k=0..n} T(n, k) = A106514(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106515(n).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-3,k) - T(n-3,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 14 2014
From Wolfdieter Lang, Oct 05 2014: (Start)
O.g.f. for row polynomials R(n,x) = Sum_{k=0..n} T(n,k)*x^k: (1 - z)/((1 - 2*z - z^2)*(1 - (1+x)*z)).
O.g.f. column m: (1/(1 - 2*z - z^2))*(z/(1 - z))^m, m >= 0. (Riordan property).
The alternating row sums are shown in A001333.
A-sequence: [1, 1] (see the three term recurrence given above). Z-sequence has o.g.f. (2 + 3*x)/(1 + x), [2, 1, repeat(-1,1)] (unsigned A054977). See the W. Lang link under A006232 for Riordan A- and Z-sequences.
The inverse Riordan triangle is shown in A248156. (End)
Comments