cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106514 Expansion of (1-x)/((1-2*x)*(1-2*x-x^2)).

Original entry on oeis.org

1, 3, 9, 25, 67, 175, 449, 1137, 2851, 7095, 17553, 43225, 106051, 259423, 633089, 1541985, 3749827, 9107175, 22095249, 53559817, 129739171, 314086735, 760009793, 1838300625, 4444999651, 10745077143, 25968708369, 62749602745
Offset: 0

Views

Author

Paul Barry, May 05 2005

Keywords

Comments

Convolution of A000079 and A001333.
Row sums of A106513.
Equals eigensequence of a triangle with the Pell series as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010

Crossrefs

Programs

  • Magma
    I:=[1,3,9]; [n le 3 select I[n] else 4*Self(n-1) -3*Self(n-2) -2*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021
    
  • Mathematica
    Table[(LucasL[n+2, 2] - 2^(n+2))/2, {n, 0, 40}] (* G. C. Greubel, Aug 05 2021 *)
  • Sage
    [(lucas_number2(n+2, 2, -1) - 2^(n+2))/2 for n in (0..40)] # G. C. Greubel, Aug 05 2021

Formula

a(n) = Sum_{k=0..n} 2^(n-k-1)*((1-sqrt(2))^k + (1+sqrt(2))^k).
a(n) = Sum_{k=0..n} Sum_{j=0..floor((n+1)/2)} binomial(n+1, 2*j+k+1)*2^j.
a(n) = Pell(n+3) - Pell(n+2) - 2^(n+1) = A001333(n+2) - 2^(n+1). - Ralf Stephan, Jun 02 2007
From G. C. Greubel, Aug 05 2021: (Start)
a(n) = A001333(n+2) - 2^(n+1) = (A002203(n+2) - 2^(n+2))/2.
Sum_{j=0..n} a(j) = A094706(n+1). (End)