A106514 Expansion of (1-x)/((1-2*x)*(1-2*x-x^2)).
1, 3, 9, 25, 67, 175, 449, 1137, 2851, 7095, 17553, 43225, 106051, 259423, 633089, 1541985, 3749827, 9107175, 22095249, 53559817, 129739171, 314086735, 760009793, 1838300625, 4444999651, 10745077143, 25968708369, 62749602745
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2).
Programs
-
Magma
I:=[1,3,9]; [n le 3 select I[n] else 4*Self(n-1) -3*Self(n-2) -2*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021
-
Mathematica
Table[(LucasL[n+2, 2] - 2^(n+2))/2, {n, 0, 40}] (* G. C. Greubel, Aug 05 2021 *)
-
Sage
[(lucas_number2(n+2, 2, -1) - 2^(n+2))/2 for n in (0..40)] # G. C. Greubel, Aug 05 2021
Formula
a(n) = Sum_{k=0..n} 2^(n-k-1)*((1-sqrt(2))^k + (1+sqrt(2))^k).
a(n) = Sum_{k=0..n} Sum_{j=0..floor((n+1)/2)} binomial(n+1, 2*j+k+1)*2^j.
a(n) = Pell(n+3) - Pell(n+2) - 2^(n+1) = A001333(n+2) - 2^(n+1). - Ralf Stephan, Jun 02 2007
From G. C. Greubel, Aug 05 2021: (Start)
Sum_{j=0..n} a(j) = A094706(n+1). (End)
Comments