A106523 Diagonal sums of number triangle A106522.
1, 1, 3, 4, 10, 14, 33, 49, 109, 170, 362, 586, 1207, 2011, 4037, 6878, 13536, 23464, 45475, 79891, 153011, 271612, 515460, 922372, 1738101, 3129565, 5865063, 10611336, 19802382, 35960970, 66888917, 121820229, 226016385, 412547222
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,1,0,-1).
Programs
-
Magma
I:=[1,1,3,4,10]; [n le 5 select I[n] else 3*Self(n-2) + Self(n-3) -Self(n-5): n in [1..41]]; // G. C. Greubel, Aug 10 2021
-
Mathematica
T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] + T[n-2] + T[n-3]]]; (* A000073 *) a[n_]:= (1/11)*((-1)^n*(Fibonacci[n+2] +2*Fibonacci[n]) +10*T[n+2] +5*T[n+1] + 3*T[n]); Table[a[n], {n, 0, 40}] (* G. C. Greubel, Aug 10 2021 *)
-
Sage
@CachedFunction def T(n): if (n<2): return 0 elif (n==2): return 2 else: return T(n-1) + T(n-2) + T(n-3) def a(n): return (1/11)*((-1)^n*(fibonacci(n+2) +2*fibonacci(n)) +10*T(n+2) +5*T(n+1) + 3*T(n)) [a(n) for n in (0..40)] # G. C. Greubel, Aug 10 2021
Formula
G.f.: (1+x)/((1+x-x^2)*(1-x-x^2-x^3)).
a(n) = 3*a(n-2) + a(n-3) - a(n-5).
a(n) = Sum_{k=0..floor(n/2)} A106522(n-k, k)
a(n) = (1/11)*( 10*T(n+2) + 5*T(n+1) + 3*T(n) + (-1)^n*( F(n+1) + 3*F(n) ) ), where T(n) = A000073, and F(n) = A000045. - G. C. Greubel, Aug 10 2021