cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106524 Interleave A038573(n+1) and 2*A038573(n+1).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 6, 3, 6, 7, 14, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15, 30, 15, 30, 31, 62, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15
Offset: 0

Views

Author

Paul Barry, May 06 2005

Keywords

Comments

Row sums of number the number triangle (A106522 mod 2).

Crossrefs

Programs

  • Magma
    A106524:= func< n | 2^Multiplicity(Intseq(n+2, 2), 1) - 2^(n mod 2) >;
    [A106524(n): n in [0..100]]; // G. C. Greubel, Aug 12 2021
    
  • Mathematica
    a[n_]:= (2^DigitCount[Floor[(n+2)/2], 2, 1] - 1)*(3 - (-1)^n)/2;
    Table[a[n], {n, 0, 100}] (* G. C. Greubel, Aug 11 2021 *)
  • PARI
    a(n) = bitneg(n%2, hammingweight(n+2)); \\ Kevin Ryde, Aug 25 2021
  • Sage
    def A000120(n): return sum(n.digits(2))
    def A106524(n): return 2^A000120(n+2) - 2^(n%2)
    [A106524(n) for n in (0..100)] # G. C. Greubel, Aug 11 2021
    

Formula

a(n) = (Sum_{k=0..n+2} binomial(n+2, k)) mod 2 - (3 - (-1)^n)/2.
a(n) = ( (Sum_{k=0..(n/2+1)} binomial(n/2+1, k)) mod 2 - 1 )*(1 + (-1)^n)/2 + ( (Sum_{k=0..(n+1)/2} binomial((n+1)/2, k)) mod 2 - 1)*(1 - (-1)^n)/2.
a(n) = A001316(n+2) - A000034(n).