cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106579 Triangular array associated with Schroeder numbers: T(0,0) = 1, T(n,0) = 0 for n > 0; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, 8, 30, 68, 90, 0, 1, 10, 48, 146, 304, 394, 0, 1, 12, 70, 264, 714, 1412, 1806, 0, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 0, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 0, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2005

Keywords

Examples

			Triangle starts
  1;
  0,    1;
  0,    1,    2;
  0,    1,    4,    6;
  0,    1,    6,   16,   22;
  0,    1,    8,   30,   68,   90;
  0,    1,   10,   48,  146,  304,  394;
  0,    1,   12,   70,  264,  714, 1412, 1806;
  ...
		

Crossrefs

Essentially the same as A033877 except with a leading column 1, 0, 0, 0, ...
Last diagonal: A006318 or A103137.
Row sums give A001003.
See A033877 for more comments and references.

Programs

  • Haskell
    a106579 n k = a106579_tabl !! n !! k
    a106579_row n = a106579_tabl !! n
    a106579_tabl = [1] : iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [0,1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Mathematica
    T[n_, k_]:= T[n, k]= Which[n==k==0, 1, n==0, 0, k==0, 0, k>n, 0, True, T[n, k-1] + T[n-1, k-1] + T[n-1, k]]; Table[T[n, k], {n,0,11}, {k,0,n}]//Flatten (* Michael De Vlieger, Nov 05 2017 *)
  • Sage
    def A106579_row(n):
        if n==0: return [1]
        @cached_function
        def prec(n, k):
            if k==n: return -1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k+1) for k in (0..n)]
    for n in (0..10): print(A106579_row(n)) # Peter Luschny, Mar 16 2016

Formula

G.f.: Sum T(n, k)*x^n*y^k = 1 + y*(1 - x*y - (x^2*y^2 - 6*x*y + 1)^(1/2))/(2*y + x*y - 1 + (x^2*y^2 - 6*x*y + 1)^(1/2)).