A106585 Triangle read by rows: even-numbered rows of A106580.
1, 1, 2, 2, 1, 2, 5, 7, 7, 1, 2, 5, 13, 22, 29, 29, 1, 2, 5, 13, 34, 65, 101, 130, 130, 1, 2, 5, 13, 34, 89, 185, 322, 481, 611, 611, 1, 2, 5, 13, 34, 89, 233, 514, 973, 1613, 2354, 2965, 2965, 1, 2, 5, 13, 34, 89, 233, 610, 1405, 2837, 5090, 8185, 11761, 14726, 14726
Offset: 0
Examples
Irregular triangle begins as: 1; 1, 2, 2; 1, 2, 5, 7, 7; 1, 2, 5, 13, 22, 29, 29; 1, 2, 5, 13, 34, 65, 101, 130, 130; 1, 2, 5, 13, 34, 89, 185, 322, 481, 611, 611; 1, 2, 5, 13, 34, 89, 233, 514, 973, 1613, 2354, 2965, 2965; 1, 2, 5, 13, 34, 89, 233, 610, 1405, 2837, 5090, 8185, 11761, 14726, 14726;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Maple
A106580:= proc(n,k) option remember; if k =0 then 1; else A106580(n,k-1) + add(A106580(n-2*i, k-i), i=1..min(k,floor(n/2),n-k)); fi; end: for n from 0 to 18 by 2 do for k from 0 to n do printf("%d, ",A106580(n,k)); od; od; # R. J. Mathar, Aug 10 2007
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, T[n, k-1] + Sum[T[n-2*j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]]; (* T(n, k) = A106580; T(2*n, k) = A106585 *) Table[T[2*n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Sep 07 2021 *)
-
Sage
@CachedFunction def T(n, k): # T(n, k) = A106580; T(2*n, k) = A106585 if (k<0): return 0 elif (k==0): return 1 else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) flatten([[T(2*n, k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Sep 07 2021
Formula
T(n, k) = A106580(2*n, k).
Extensions
More terms from R. J. Mathar, Aug 10 2007