A106602 Number of primitive positive solutions to 8n+2=x^2+y^2.
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0
Offset: 0
Examples
a(16)=2 because we have 130=11^2+3^2=9^2+7^2. a(2)=0 because although 18=3^2+3^2, these components are not mutually prime.
Links
- R. J. Mathar, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A106594.
Programs
-
Maple
A106602 := proc(n) local a,x,y,fourn; fourn := 8*n+2 ; a := 0 ; for x from 1 do if x^2 >= fourn then return a; else y := fourn-x^2 ; if issqr(y) then y := sqrt(y) ; if y <= x and igcd(x,y) = 1 then a := a+1 ; end if; end if; end if: end do: end proc: # R. J. Mathar, Sep 21 2013