A106634 Number of ways to express n as i*j+k*l, with i,j,k,l in the range [0..n].
1, 6, 21, 32, 62, 58, 124, 88, 173, 158, 226, 156, 380, 194, 340, 356, 466, 274, 613, 316, 690, 536, 596, 404, 1060, 552, 734, 728, 1032, 546, 1376, 596, 1213, 932, 1026, 976, 1858, 750, 1180, 1144, 1910, 854, 2048, 908, 1784, 1730, 1500, 1016, 2800
Offset: 0
Examples
a(1)=6: the 4-tuples ijkl are 1100, 1101, 1110, 0011, 0111, 1011. a(2)=21: 1111, 2100, 210x, 21x0, 1200, 120x, 12x0, where x = 1 or 2, and ten more with the two halves swapped.
Links
- R. J. Mathar and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms through 780 from Mathar)
Programs
-
Maple
A106634 := proc(n) local a,i,j,k,l ; a := 0 ; for i from 0 to n do for j from 0 to n do if i*j > n then break; end if; for k from 0 to n do if i*j = n then # treat l=0 separately a := a+1 ; end if; # l=1..n if k =0 then if i*j=n then a := a+n ; end if; else l := (n-i*j)/k ; if l >=1 and l <=n and type(l,'integer') then a := a+1 ; end if; end if; end do: end do: end do: a ; end proc: # R. J. Mathar, Oct 17 2012
-
Mathematica
list[n_] := Module[{v, i, j}, v[_] = 0; For[i = 2, i <= n, i++, For[j = 1, j <= Min[Quotient[n, i], i-1], j++, v[i*j]+= 2]]; For[i = 1, i <= Floor@Sqrt[n], i++, v[i^2]++]; Join[{1}, Table[2 Sum[v[j] v[i-j], {j, Quotient[i, 2]+1, i-1}]+If[OddQ[i], 0, v[i/2]^2]+(4i+2) v[i], {i, 1, n}]]]; list[48] (* Jean-François Alcover, Jun 04 2023, after Charles R Greathouse IV *)
-
PARI
list(n)={ my(v=vector(n)); for(i=2,n,for(j=1,min(n\i,i-1),v[i*j]+=2)); for(i=1,sqrtint(n),v[i^2]++); concat(1,vector(n,i,2*sum(j=i\2+1,i-1,v[j]*v[i-j])+if(i%2,,v[i/2]^2)+(4*i+2)*v[i])) }; \\ Charles R Greathouse IV, Oct 17 2012
Formula
Extensions
Definition clarified by N. J. A. Sloane, Jul 07 2012
Comments