A106639 Distinguished primes.
2, 3, 5, 7, 11, 13, 19, 23, 29, 37, 43, 59, 61, 67, 83, 157, 173, 227, 277, 283, 317, 347, 563, 653, 733, 787, 877, 907, 997, 1213, 1237, 1283, 1307, 1523, 1867, 2083, 2693, 2797, 2803, 3253, 3413, 3517, 3643, 3677, 3733, 3803, 4253, 4363, 4547, 4723, 5387
Offset: 1
Keywords
Examples
19 is in the sequence because 18 has 3 prime factors, 2, 3 and 3; 19 has 1 and 20 has 3 prime factors, 2, 2 and 5, for a total of 7 prime factors in the neighborhood.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- L. E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger of Math., 33 (1904), 155-161.
Crossrefs
Cf. A239669.
Programs
-
Mathematica
Select[Prime[Range[1000]], Total[FactorInteger[#^3 - #]][[2]] <= 7&] (* T. D. Noe, Apr 20 2011 *)
-
PARI
isA106639(p)=my(g=gcd(p-1,12));isprime(p\g)&isprime((p+1)*g/24)&isprime(p) \\ Charles R Greathouse IV, Apr 20 2011
-
PARI
forprime(p=1,6000,if(bigomega(p-1)+bigomega(p+1)<=6,print1(p", "))) \\ Chris Boyd, Mar 23 2014
Formula
Primes p such that Omega(p^3 - p) <= 7, where Omega is A001222.
Extensions
Formula, comment, offset, program, and link from Charles R Greathouse IV, Apr 20 2011
Comments