cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107035 Expansion of q * (psi(q^4) / phi(-q))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 12, 32, 78, 176, 376, 768, 1509, 2872, 5316, 9600, 16966, 29408, 50088, 83968, 138738, 226196, 364284, 580032, 913824, 1425552, 2203368, 3376128, 5130999, 7738136, 11585208, 17225472, 25444278, 37350816, 54504160, 79085568
Offset: 1

Views

Author

Michael Somos, May 09 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 12*q^3 + 32*q^4 + 78*q^5 + 176*q^6 + 376*q^7 + 768*q^8 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 375. Eqs. (20), (21), (24)

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) (EllipticTheta[ 2, 0, q^2] / EllipticTheta[ 4, 0, q])^2, {q, 0, n}]; (* Michael Somos, Jun 13 2012 *)
    a[ n_] := With[ {m = ModularLambda[ Log[q] / (Pi I)]}, SeriesCoefficient[ (1/8) (-1 + 1 / Sqrt[1 - m]), {q, 0, n}]]; (* Michael Somos, Jun 13 2012 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^k)^4 * (1 + x^(2*k))^2 * (1 + x^(4*k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    QP = QPochhammer; s = (QP[q^2]/QP[q^4])^2*(QP[q^8]/QP[q])^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x^4 + A))^2 * (eta(x^8 + A) / eta(x + A))^4, n))};

Formula

Expansion of (eta(q^2) / eta(q^4))^2 * (eta(q^8) / eta(q))^4 in powers of q.
Expansion of Fricke tau_8(omega) / 16 in powers of q = exp(2 Pi i omega).
Expansion of elliptic (1/8) * (-1 + 1 / sqrt(1 - lambda(z)) = (1/8) * (-1 + 1 / k') in powers of the nome q = exp(Pi i z).
Expansion of ((phi(q) / phi(-q))^2 - 1) / 8 in powers of q where phi() is a Ramanujan theta function.
Elliptic j(z) = 256 * (x^4 + 8*x^3 + 20*x^2 + 16*x + 1)^3 / (x * (x + 4) * (x + 2)^2) where x = tau_8(z).
Euler transform of period 8 sequence [ 4, 2, 4, 4, 4, 2, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 + 4 * v^2 + 8 * u * v + 32 * u * v^2.
G.f: x * Product_{k>0} (1 + x^k)^4 * (1 + x^(2*k))^2 * (1 + x^(4*k))^4.
Convolution inverse of A131124. A131126(n) = 4 * a(n) unless n=0. A014969(n) = 8 * a(n) unless n=0.
a(n) ~ exp(sqrt(2*n)*Pi) / (64 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015