A107035 Expansion of q * (psi(q^4) / phi(-q))^2 in powers of q where phi(), psi() are Ramanujan theta functions.
1, 4, 12, 32, 78, 176, 376, 768, 1509, 2872, 5316, 9600, 16966, 29408, 50088, 83968, 138738, 226196, 364284, 580032, 913824, 1425552, 2203368, 3376128, 5130999, 7738136, 11585208, 17225472, 25444278, 37350816, 54504160, 79085568
Offset: 1
Keywords
Examples
G.f. = q + 4*q^2 + 12*q^3 + 32*q^4 + 78*q^5 + 176*q^6 + 376*q^7 + 768*q^8 + ...
References
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 375. Eqs. (20), (21), (24)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- Kevin Acres and David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (1/4) (EllipticTheta[ 2, 0, q^2] / EllipticTheta[ 4, 0, q])^2, {q, 0, n}]; (* Michael Somos, Jun 13 2012 *) a[ n_] := With[ {m = ModularLambda[ Log[q] / (Pi I)]}, SeriesCoefficient[ (1/8) (-1 + 1 / Sqrt[1 - m]), {q, 0, n}]]; (* Michael Somos, Jun 13 2012 *) nmax = 50; CoefficientList[Series[Product[(1 + x^k)^4 * (1 + x^(2*k))^2 * (1 + x^(4*k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) QP = QPochhammer; s = (QP[q^2]/QP[q^4])^2*(QP[q^8]/QP[q])^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x^4 + A))^2 * (eta(x^8 + A) / eta(x + A))^4, n))};
Formula
Expansion of (eta(q^2) / eta(q^4))^2 * (eta(q^8) / eta(q))^4 in powers of q.
Expansion of Fricke tau_8(omega) / 16 in powers of q = exp(2 Pi i omega).
Expansion of elliptic (1/8) * (-1 + 1 / sqrt(1 - lambda(z)) = (1/8) * (-1 + 1 / k') in powers of the nome q = exp(Pi i z).
Expansion of ((phi(q) / phi(-q))^2 - 1) / 8 in powers of q where phi() is a Ramanujan theta function.
Elliptic j(z) = 256 * (x^4 + 8*x^3 + 20*x^2 + 16*x + 1)^3 / (x * (x + 4) * (x + 2)^2) where x = tau_8(z).
Euler transform of period 8 sequence [ 4, 2, 4, 4, 4, 2, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 + 4 * v^2 + 8 * u * v + 32 * u * v^2.
G.f: x * Product_{k>0} (1 + x^k)^4 * (1 + x^(2*k))^2 * (1 + x^(4*k))^4.
a(n) ~ exp(sqrt(2*n)*Pi) / (64 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Comments