A107047 Numerators of coefficients that satisfy: 2^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107048(k).
1, 1, 1, 7, 77, 32387, 395159, 31824093937, 44855117331581, 1825389561156191099, 1571879809058619206897, 28070265610073576492663157851903, 2782861136717279135850604073374039
Offset: 0
Examples
2^0 = 1; 2^1 = 1 + 1; 2^2 = 1 + 1*2 + (1/4)*2^2; 2^3 = 1 + 1*3 + (1/4)*3^2 + (7/108)*3^3; 2^4 = 1 + 1*4 + (1/4)*4^2 + (7/108)*4^3 + (77/6912)*4^4. Initial fractional coefficients are: A107047/A107048 = {1, 1, 1/4, 7/108, 77/6912, 32387/21600000, 395159/2332800000, 31824093937/1921161110400000, 44855117331581/31476303632793600000, ... }.
Programs
-
PARI
{a(n)=numerator(sum(k=0,n,2^k*(matrix(n+1,n+1,r,c,if(r>=c,(r-1)^(c-1)))^-1)[n+1,k+1]))}
Comments