A107049 Numerators of coefficients that satisfy: 3^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107050(k).
1, 2, 1, 11, 101, 71723, 1462111, 194269981673, 224103520039487, 14876670160046176873, 20871062802926443547323, 606768727432357137728440774281877, 97827345788163051844748893917483101
Offset: 0
Examples
3^0 = 1; 3^1 = 1 + (2)*1; 3^2 = 1 + (2)*2 + (1)*2^2; 3^3 = 1 + (2)*3 + (1)*3^2 + (11/27)*3^3; 3^4 = 1 + (2)*4 + (1)*4^2 + (11/27)*4^3 + (101/864)*4^4. Initial coefficients are: A107049/A107050 = {1, 2, 1, 11/27, 101/864, 71723/2700000, 1462111/291600000, 194269981673/240145138800000, 224103520039487/1967268977049600000, ...}.
Programs
-
PARI
{a(n)=numerator(sum(k=0,n,3^k*(matrix(n+1,n+1,r,c,if(r>=c,(r-1)^(c-1)))^-1)[n+1,k+1]))}
Comments