A107051 Numerators of coefficients that satisfy: 4^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107052(k).
1, 3, 9, 5, 127, 124273, 385829, 70009765747, 220026935042111, 59574747365570286907, 113453152114585319883313, 4471148647570383262775217527741887
Offset: 0
Examples
4^0 = 1; 4^1 = 1 + (3)*1; 4^2 = 1 + (3)*2 + (9/4)*2^2; 4^3 = 1 + (3)*3 + (9/4)*3^2 + (5/4)*3^3; 4^4 = 1 + (3)*4 + (9/4)*4^2 + (5/4)*4^3 + (127/256)*4^4. Initial coefficients are: A107051/A107052 = {1, 3, 9/4, 5/4, 127/256, 124273/800000, 385829/9600000, 70009765747/7906012800000, 220026935042111/129532113715200000, ...}.
Crossrefs
Programs
-
PARI
{a(n)=numerator(sum(k=0,n,4^k*(matrix(n+1,n+1,r,c,if(r>=c,(r-1)^(c-1)))^-1)[n+1,k+1]))}
Comments