A107056 Matrix inverse of A103247, so that T(n,k) = C(n,k)*A010842(n-k), read by rows.
1, 3, 1, 10, 6, 1, 38, 30, 9, 1, 168, 152, 60, 12, 1, 872, 840, 380, 100, 15, 1, 5296, 5232, 2520, 760, 150, 18, 1, 37200, 37072, 18312, 5880, 1330, 210, 21, 1, 297856, 297600, 148288, 48832, 11760, 2128, 280, 24, 1, 2681216, 2680704, 1339200, 444864, 109872
Offset: 0
Examples
Triangle T begins: 1; 3,1; 10,6,1; 38,30,9,1; 168,152,60,12,1; 872,840,380,100,15,1; 5296,5232,2520,760,150,18,1; ... where T(n,k) = A010842(n-k)*binomial(n,k). Matrix logarithm L begins: 0; -3,0; -1,-6,0; -2,-3,-9,0; -6,-8,-6,-12,0; -24,-30,-20,-10,-15,0; ... where L(n,k) = L(n,0)*binomial(n,k), with L(n,0)=-(n-1)! for n>1, L(1,0)=-3, L(0,0)=0.
Programs
-
PARI
T(n,k)=n!/k!*sum(j=0,n-k,2^(n-k-j)/(n-k-j)!)
Formula
T(n, k) = n!/k!*Sum_{j=0..n-k} 2^(n-k-j)/(n-k-j)!.
Comments