A107068 Expansion of 1/((1+x)^3-x^4).
1, -3, 6, -10, 16, -27, 49, -92, 172, -316, 573, -1035, 1874, -3406, 6204, -11303, 20577, -37432, 68072, -123800, 225193, -409683, 745342, -1355970, 2466760, -4487395, 8163217, -14850196, 27015092, -49145300, 89404037, -162641499, 295872778, -538243174, 979156724, -1781254927, 3240410561
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-3,-3,-1,1).
Crossrefs
Cf. A077990.
Programs
-
Mathematica
LinearRecurrence[{-3,-3,-1,1},{1,-3,6,-10},40] (* Harvey P. Dale, Jul 16 2018 *)
Formula
G.f.: 1/(1+3x+3x^2+x^3-x^4); a(n)=sum{k=0..n+4, (-1)^(n-k)*C(n+4, k)*sum{j=0..floor(k/4), C(k-3j, j)}}.