A107079 Minimal number of squared primes in a squarefree gap of length n.
1, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 17, 17, 18, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 30, 31, 32, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 38, 39, 40, 40, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
- Louis Marmet, First occurrences of squarefree gaps and an algorithm for their computation
- Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012. - _N. J. A. Sloane_, Jan 01 2013
Programs
-
Mathematica
a[n_] := Sum[Boole[SquareFreeQ[k]], {k, 1, n-1}] + 1; Array[a, 100] (* Jean-François Alcover, Sep 11 2018, from A013928 *)
-
PARI
A107079(n)=1+sum(k=1,n-1,bitand(moebius(k),1)) \\ Charles R Greathouse IV, Sep 22 2008
-
Python
from math import isqrt from sympy import mobius def A107079(n): return 1+sum(mobius(k)*((n-1)//k**2) for k in range(1,isqrt(n-1)+1)) # Chai Wah Wu, Jan 03 2024
Formula
a(n) = sum{k=0..n-1, moebius_mu(n-k-1) mod 2}.
From Antti Karttunen, Oct 07 2016: (Start)
a(n) = 1 + A013928(n). [Cf. Charles R Greathouse IV's PARI-program.]
For all n >= 1, a(A005117(n)) = n. (End)
Extensions
New definition from Charles R Greathouse IV, Sep 22 2008