A107111 Number array whose rows are the series reversions of x(1-x)/(1+x)^k, read by antidiagonals.
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 13, 22, 14, 1, 5, 23, 67, 90, 42, 1, 6, 36, 156, 381, 394, 132, 1, 7, 52, 305, 1162, 2307, 1806, 429, 1, 8, 71, 530, 2833, 9192, 14589, 8558, 1430, 1, 9, 93, 847, 5919, 27916, 75819, 95235, 41586, 4862, 1, 10, 118, 1272, 11070, 70098, 286632, 644908, 636925, 206098, 16796
Offset: 0
Examples
Array begins 1,1,2,5,14,42,132,... 1,2,6,22,90,394,1806,... 1,3,13,67,381,2307,14589,... 1,4,23,156,1162,9192,75819,...
Crossrefs
Cf. A366012.
Programs
-
Maple
A107111 := proc(n,k) add(binomial(n*(k+1),k-j)*binomial(k+j,j),j=0..k); %/(k+1) ; end proc: # R. J. Mathar, Aug 02 2016
-
Mathematica
T[n_, k_] := Sum[Binomial[n (k + 1), k - j] Binomial[k + j, j], {j, 0, k}]/(k + 1); Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2020 *)
Formula
T(n, k)=sum{j=0..k, binomial(n(k+1), k-j)*binomial(k+j, j)}/(k+1)
Comments