cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107142 Primes of the form x^2 + 36y^2.

Original entry on oeis.org

37, 61, 157, 193, 313, 349, 373, 397, 433, 577, 601, 613, 661, 673, 769, 853, 877, 937, 997, 1021, 1069, 1201, 1297, 1321, 1429, 1549, 1657, 1693, 1741, 1789, 1801, 1861, 1933, 1993, 2053, 2137, 2269, 2293, 2389, 2437, 2473, 2521, 2593, 2749
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -144. See A107132 for more information.
These appear to be the same as Glaisher's 1889 list of primes == 1 mod 12 that have "positive character". - N. J. A. Sloane, Jul 30 2015

References

  • J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 36, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\36), if(isprime(t=w+36*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017