A107174 Primes of the form 2x^2 + 33y^2.
2, 41, 83, 131, 233, 347, 809, 827, 857, 953, 1019, 1091, 1097, 1163, 1217, 1283, 1601, 1619, 1667, 1979, 2081, 2129, 2339, 2393, 2417, 2609, 2801, 2969, 3011, 3137, 3251, 3299, 3539, 3659, 3923, 3929, 4001, 4091, 4241, 4451, 4523, 4721
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[2, 0, 33, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\33), if(isprime(t=w+33*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
Comments