A107182 Primes of the form 2x^2 + 37y^2.
2, 37, 109, 199, 383, 431, 461, 487, 911, 919, 997, 1087, 1213, 1301, 1583, 1831, 1901, 2381, 2383, 2999, 3079, 3221, 3271, 3389, 3517, 3533, 3613, 3719, 3797, 3967, 4349, 4549, 4639, 4679, 4751, 4919, 5309, 5333, 5741, 5869, 6197, 6271
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[2, 0, 37, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\37), if(isprime(t=w+37*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
Comments