A107212 Primes of the form 3x^2 + 32y^2.
3, 59, 107, 131, 179, 491, 587, 659, 827, 947, 1019, 1163, 1187, 1307, 1451, 1571, 1619, 1667, 1811, 1907, 1931, 2003, 2099, 2243, 2411, 2699, 3011, 3203, 3299, 3323, 3347, 3371, 3779, 3803, 3923, 3947, 4019, 4091, 4139, 4283, 4451, 4523
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[3, 0, 32, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\32), if(isprime(t=w+32*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
Comments