cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107015 Number of even terms in Zeckendorf representation of n.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 09 2005

Keywords

Comments

a(n) = A007895(n) - A107016(n).
a(A107228(n)) = 0. - Reinhard Zumkeller, May 15 2005

Examples

			n = 77 = 55+21+1 -> a(77) = #{} = 0;
n = 88 = 55+21+8+3+1 -> a(88) = #{8} = 1;
n = 99 = 89+8+2 -> a(99) = #{2, 8} = 2.
		

Crossrefs

Programs

A107227 Numbers having no odd terms in their Zeckendorf representation.

Original entry on oeis.org

2, 8, 10, 34, 36, 42, 44, 144, 146, 152, 154, 178, 180, 186, 188, 610, 612, 618, 620, 644, 646, 652, 654, 754, 756, 762, 764, 788, 790, 796, 798, 2584, 2586, 2592, 2594, 2618, 2620, 2626, 2628, 2728, 2730, 2736, 2738, 2762, 2764, 2770, 2772, 3194, 3196, 3202
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2005

Keywords

Comments

A107016(a(n))=0, A107015(a(n))>0; subsequence of A107225.

Crossrefs

Programs

  • Haskell
    a107227 n = a107227_list !! (n-1)
    a107227_list = filter ((all even) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
Showing 1-2 of 2 results.