cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107233 An inverse Chebyshev transform of n^3.

Original entry on oeis.org

0, 1, 8, 30, 96, 270, 720, 1820, 4480, 10710, 25200, 58212, 133056, 300300, 672672, 1492920, 3294720, 7220070, 15752880, 34179860, 73902400, 159074916, 341429088, 730122120, 1557593856, 3312591100, 7030805600, 14883258600, 31451414400
Offset: 0

Views

Author

Paul Barry, May 13 2005

Keywords

Comments

Image of n^3 under the mapping of g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + 4*x) / ((1 - 2*x)^(5/2) * Sqrt[1 + 2*x]), {x, 0, 30}], x] (* Vaclav Kotesovec, Nov 04 2017 *)

Formula

G.f.: 4x(sqrt(1-4x^2)-1)^2(4x+1)/(sqrt(1-4x^2)(sqrt(1-4x^2)+2x-1)^4); a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(n-2k)^3.
D-finite with recurrence (n-1)*a(n)+4*(n-4)*a(n-1) -4*(n+4)*a(n-2) +16*(2-n)*a(n-3)=0. - R. J. Mathar, Nov 09 2012
From Vaclav Kotesovec, Nov 04 2017: (Start)
G.f.: x*(1 + 4*x) / ((1 - 2*x)^(5/2) * sqrt(1 + 2*x)).
a(n) ~ 2^(n + 1/2) * n^(3/2) / sqrt(Pi). (End)