cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107331 An approximation to sigma_{1/2}(n): multiplicative with a(p^e) = floor((p^(e/2+1/2)-1)/(p^(1/2)-1)) for prime p.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 3, 7, 5, 6, 4, 8, 4, 6, 6, 11, 5, 10, 5, 12, 6, 8, 5, 14, 8, 8, 10, 12, 6, 12, 6, 16, 8, 10, 9, 20, 7, 10, 8, 21, 7, 12, 7, 16, 15, 10, 7, 22, 10, 16, 10, 16, 8, 20, 12, 21, 10, 12, 8, 24, 8, 12, 15, 24, 12, 16, 9, 20, 10, 18, 9, 35, 9, 14, 16, 20, 12, 16, 9, 33, 19, 14
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 23 2005

Keywords

Comments

Whereas A086671 takes the sum of the floor of the square roots of each of the divisors of n and A058266 takes the floor of the product formula, this sequence takes the product of the floor of the individual prime components of the product formula.

Examples

			a(8) = floor((2^((3+1)/2)-1)/(2^(1/2)-1)) = floor(3/(sqrt(2)-1)) = floor(7.242...) = 7.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{pfe = FactorInteger[n]}, Times @@ Floor[((First /@ pfe)^((Last /@ pfe + 1)/2) - 1)/((First /@ pfe)^(1/2) - 1)]]; Table[ f[n], {n, 82}] (* Robert G. Wilson v, Jun 08 2005 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 08 2005