cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107352 Number of positive integers <= 10^n that are divisible by no prime exceeding 11.

Original entry on oeis.org

1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, 20193, 30524, 44696, 63694, 88658, 120895, 161885, 213294, 276997, 355082, 449849, 563834, 699826, 860861, 1050260, 1271598, 1528765, 1825937, 2167611, 2558606, 3004075, 3509523
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2005

Keywords

Comments

Lehmer quotes A. E. Western as computing a(5) = 1197, a(8) = 7838 and a(10) = 20193.
Number of integers of the form 2^a*3^b*5^c*7^d*11^e <= 10^n.

Crossrefs

Row 5 of A253635.

Programs

  • Mathematica
    fQ[n_] := FactorInteger[n][[ -1, 1]] < 13; c = 1; k = 1; Do[ While[k <= 10^n, If[ fQ[k], c++ ]; k++ ]; Print[c], {n, 0, 9}] (* Or *)
    n = 32; t = Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, Log[2, 10^n]}, {b, 0, Log[3, 10^n]}]], # <= 10^n &], {c, 0, Log[5, 10^n]}]], # <= 10^n &], {d, 0, Log[7, 10^n]}]], # <= 10^n &], {e, 0, Log[11, 10^n]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 32}] (* Robert G. Wilson v, May 24 2005 *)
  • Python
    from sympy import integer_log, prevprime
    def A107352(n):
        def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
        return g(10**n,11) # Chai Wah Wu, Oct 22 2024

Formula

Does a(n)/(a(n-1) - a(n-2)) tend to c*n + d for large n where c ~= 0.20 and d ~= 1.37? - David A. Corneth, Nov 14 2019

Extensions

More terms from Robert G. Wilson v and Don Reble, May 26 2005