A107352 Number of positive integers <= 10^n that are divisible by no prime exceeding 11.
1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, 20193, 30524, 44696, 63694, 88658, 120895, 161885, 213294, 276997, 355082, 449849, 563834, 699826, 860861, 1050260, 1271598, 1528765, 1825937, 2167611, 2558606, 3004075, 3509523
Offset: 0
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 0..119
- D. H. Lehmer, The lattice points of an n-dimensional tetrahedron, Duke Math. J., 7 (1941), 341-353.
Programs
-
Mathematica
fQ[n_] := FactorInteger[n][[ -1, 1]] < 13; c = 1; k = 1; Do[ While[k <= 10^n, If[ fQ[k], c++ ]; k++ ]; Print[c], {n, 0, 9}] (* Or *) n = 32; t = Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, Log[2, 10^n]}, {b, 0, Log[3, 10^n]}]], # <= 10^n &], {c, 0, Log[5, 10^n]}]], # <= 10^n &], {d, 0, Log[7, 10^n]}]], # <= 10^n &], {e, 0, Log[11, 10^n]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 32}] (* Robert G. Wilson v, May 24 2005 *)
-
Python
from sympy import integer_log, prevprime def A107352(n): def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1)) return g(10**n,11) # Chai Wah Wu, Oct 22 2024
Formula
Does a(n)/(a(n-1) - a(n-2)) tend to c*n + d for large n where c ~= 0.20 and d ~= 1.37? - David A. Corneth, Nov 14 2019
Extensions
More terms from Robert G. Wilson v and Don Reble, May 26 2005
Comments