cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107364 Numbers of the form (3^i)*(13^j).

Original entry on oeis.org

1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
  • Mathematica
    mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    

Formula

Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020