A107459
Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 6 on 4n vertices for 1<=k
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2
Offset: 4
Keywords
Examples
A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd; it has girth 6 if and only if it has girth more than 4 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1) The smallest bipartite generalized Petersen graph with girth 6 is P(8,3)
References
- I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
Links
- Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865).
- M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
Comments