A107676 Matrix cube of triangle A107671.
1, 56, 8, 7965, 513, 27, 2128064, 81856, 2368, 64, 914929500, 23846125, 469625, 7625, 125, 576689214816, 10943504136, 160767720, 1898856, 19656, 216, 500750172337212, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343
Offset: 0
Examples
Triangle begins: 1; 56,8; 7965,513,27; 2128064,81856,2368,64; 914929500,23846125,469625,7625,125; 576689214816,10943504136,160767720,1898856,19656,216; ... which equals the matrix cube of triangle A107671: 1; 8,2; 513,27,3; 81856,2368,64,4; 23846125,469625,7625,125,5; 10943504136,160767720,1898856,19656,216,6; ...
Programs
-
PARI
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^3*P)[n+1,k+1])}
Formula
Matrix diagonalization method: define triangular matrix P by P(n, k) = ((n+1)^3)^(n-k)/(n-k)!, n>=k>=0 and diagonal matrix D(n, n) = n+1, then T is given by T = P^-1*D^3*P.
Comments