cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107711 Triangle read by rows: T(0,0)=1, T(n,m) = binomial(n,m) * gcd(n,m)/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 10, 5, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 7, 7, 35, 7, 7, 1, 1, 1, 1, 4, 28, 14, 14, 28, 4, 1, 1, 1, 1, 9, 12, 42, 126, 42, 12, 9, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 11, 55, 165, 66, 462, 66, 165, 55, 11, 1, 1
Offset: 0

Views

Author

Leroy Quet, Jun 10 2005

Keywords

Comments

T(0,0) is an indeterminate, but 1 seems a logical value to assign it. T(n,0) = T(n,1) = T(n,n-1) = T(n,n) = 1.
T(2n,n) = A001700(n-1) (n>=1). - Emeric Deutsch, Jun 13 2005

Examples

			T(6,2)=5 because binomial(6,2)*gcd(6,2)/6 = 15*2/6 = 5.
The triangle T(n,m) begins:
n\m 0  1  2   3   4    5   6   7  8  9  10...
0:  1
1:  1  1
2:  1  1  1
3:  1  1  1   1
4:  1  1  3   1   1
5:  1  1  2   2   1    1
6:  1  1  5  10   5    1   1
7:  1  1  3   5   5    3   1   1
8:  1  1  7   7  35    7   7   1  1
9:  1  1  4  28  14   14  28   4  1  1
10: 1  1  9  12  42  126  42  12  9  1   1
n\m 0  1  2   3   4    5   6   7  8  9  10...
... reformatted - _Wolfdieter Lang_, Feb 23 2014
		

Crossrefs

Programs

  • Haskell
    a107711 n k = a107711_tabl !! n !! k
    a107711_row n = a107711_tabl !! n
    a107711_tabl = [1] : zipWith (map . flip div) [1..]
                   (tail $ zipWith (zipWith (*)) a007318_tabl a109004_tabl)
    -- Reinhard Zumkeller, Feb 28 2014
  • Maple
    a:=proc(n,k) if n=0 and k=0 then 1 elif k<=n then binomial(n,k)*gcd(n,k)/n else 0 fi end: for n from 0 to 13 do seq(a(n,k),k=0..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jun 13 2005
  • Mathematica
    T[0, 0] = 1; T[n_, m_] := Binomial[n, m] * GCD[n, m]/n;
    Table[T[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)

Formula

From Wolfdieter Lang, Feb 28 2014 (Start)
T(n, m) = T(n-1,m)*(n-1)*gcd(n,m)/((n-m)*gcd(n-1,m)), n > m >= 1, T(n, 0) = 1, T(n, n) = 1, otherwise 0.
T(n, m) = binomial(n-1,m-1)*gcd(n,m)/m for n >= m >= 1, T(n,0) = 1, otherwise 0 (from iteration of the preceding recurrence).
T(n, m) = T(n-1, m-1)*(n-1)*gcd(n,m)/(m*gcd(n-1,m-1)) for n >= m >= 2, T(n, 0) = 1, T(n, 1) = 0, otherwise 0 (from the preceding formula).
T(2*n, n) = A001700(n-1) (n>=1) (see the Emeric Deutsch comment above), T(2*n, n-1) = A234040(n), T(2*n+1,n) = A000108(n), n >= 0 (Catalan numbers).
Column sequences: T(n+2, 2) = A026741(n+1), T(n+3, 3) = A234041(n), T(n+4, 4) = A208950(n+2), T(n+5, 5) = A234042, n >= 0. (End)

Extensions

More terms from Emeric Deutsch, Jun 13 2005