cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A107721 Column 1 of triangle A107719.

Original entry on oeis.org

1, 2, 13, 131, 1741, 28451, 549757, 12247211, 308953453, 8706012827, 271093643293, 9245857326635, 342832527086797, 13733511532751099, 591127774090746493, 27209560375187822795, 1333804962202136755501
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Crossrefs

Programs

  • PARI
    
    				

A107727 Matrix inverse of A107719.

Original entry on oeis.org

1, -1, 1, -3, -2, 1, -21, -7, -3, 1, -219, -53, -13, -4, 1, -2973, -583, -115, -21, -5, 1, -49323, -8249, -1437, -217, -31, -6, 1, -964173, -141655, -22715, -3101, -369, -43, -7, 1, -21680571, -2853185, -430877, -55251, -5975, -581, -57, -8, 1, -551173053, -65887783, -9505707, -1168349, -119137
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Comments

Matrix square is A107728. Matrix cube is A107726. Column 0 is negative A107716 shift right.

Examples

			Triangle begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1;
-49323,-8249,-1437,-217,-31,-6,1;
-964173,-141655,-22715,-3101,-369,-43,-7,1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(L,N,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(M^0-M)^i/i)/3;N=sum(i=0,#L,L^i/i!); return(if(n<0,0,N[n+1,k+1]))}

A107724 Matrix logarithm of triangle A107719, read by rows.

Original entry on oeis.org

0, 1, 0, 4, 2, 0, 31, 10, 3, 0, 343, 88, 19, 4, 0, 4855, 1066, 199, 31, 5, 0, 83209, 16216, 2779, 382, 46, 6, 0, 1670743, 295360, 47791, 6130, 655, 64, 7, 0, 38436673, 6254824, 970849, 119182, 11929, 1036, 85, 8, 0, 996825703, 150917560, 22697647, 2703730
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Comments

Also equals one-third of the matrix logarithm of A107717. Column 0 is A107725.

Examples

			Triangle begins:
0;
1,0;
4,2,0;
31,10,3,0;
343,88,19,4,0;
4855,1066,199,31,5,0;
83209,16216,2779,382,46,6,0;
1670743,295360,47791,6130,655,64,7,0;
38436673,6254824,970849,119182,11929,1036,85,8,0; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i);return(if(n
    				

A107720 Column 0 of triangle A107719.

Original entry on oeis.org

1, 1, 5, 43, 509, 7579, 135341, 2813851, 66733853, 1778159275, 52604224205, 1711276244731, 60729274013309, 2335153500391627, 96727188777453869, 4294441686826824091, 203456100846249179357, 10245810557884742785387
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(E,L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, -polcoeff(1-(1+sum(c=1,m-j,prod(i=0,c-1,3*i+1)*x^c)+x*O(x^(m-j)))^-1,m-j);))))^-1); L=matrix(#M,#M,r,c,if(r>=c,sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i)[r,c])); E=matrix(#L,#L,r,c,if(r>=c,sum(i=0,#L,L^i/3^i/i!)[r,c])); if(n<0,0,E[n+1,1])}

A107725 Column 0 of A107724, which is the matrix logarithm of triangle A107719.

Original entry on oeis.org

0, 1, 4, 31, 343, 4855, 83209, 1670743, 38436673, 996825703, 28778874481, 915636860023, 31837734460129, 1201360385000071, 48899006799783889, 2135779996980897175, 99646497213608842561, 4946194601237466540967
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i);return(if(n<0,0,L[n+1,1]/3))}

A107717 Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^((3*p-1)/3)) = (3*p-1)*(column p of T), or [T^((3*p-1)/3)](m,0) = (3*p-1)*T(p+m,p) for all m>=1 and p>=0.

Original entry on oeis.org

1, 3, 1, 21, 6, 1, 219, 57, 9, 1, 2973, 723, 111, 12, 1, 49323, 11361, 1713, 183, 15, 1, 964173, 212151, 31575, 3351, 273, 18, 1, 21680571, 4584081, 675489, 71391, 5799, 381, 21, 1, 551173053, 112480887, 16442823, 1732881, 140529, 9219, 507, 24, 1
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Comments

Column 0 is A107716 (INVERTi of triple factorials). Column 1 is A107718 (twcie column 0 of T^(2/3), offset 1). The matrix logarithm divided by 3 yields the integer triangle A107724.

Examples

			SHIFT_LEFT(column 0 of T^(p-1/3)) = (3*p-1)*(column p of T):
SHIFT_LEFT(column 0 of T^(-1/3)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(2/3)) = 2*(column 1 of T);
SHIFT_LEFT(column 0 of T^(5/3)) = 5*(column 2 of T).
Triangle begins:
1;
3,1;
21,6,1;
219,57,9,1;
2973,723,111,12,1;
49323,11361,1713,183,15,1;
964173,212151,31575,3351,273,18,1;
21680571,4584081,675489,71391,5799,381,21,1; ...
Matrix power (2/3), T^(2/3), is A107719 and begins:
1;
2,1;
12,4,1;
114,32,6,1;
1446,364,62,8,1;
22722,5276,854,102,10,1; ...
compare column 0 of T^(2/3) to 2*(column 1 of T).
Matrix inverse cube-root T^(-1/3) is A107727 and begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1; ...
compare column 0 of T^(-1/3) to column 0 of T.
Matrix inverse is A107726 and begins:
1;
-3,1;
-3,-6,1;
-21,-3,-9,1;
-219,-21,-3,-12,1;
-2973,-219,-21,-3,-15,1; ...
compare column 0 of T^(-1) to column 0 of T.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n
    				
  • PARI
    {T(n,k)=if(n=j,if(m==j,1,if(m==j+1,-3*j,-T(m-j-1,0)))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))

Formula

T(n, k) = 3*(k+1)*T(n, k+1) + Sum_{j=1..n-k-1} T(j, 0)*T(n, j+k+1) for n>k>=0, with T(n, n) = 1 for n>=0. T(n, 0) = A107716(n+1) for n>=0.

A107728 Matrix inverse of A107722.

Original entry on oeis.org

1, -2, 1, -4, -4, 1, -26, -8, -6, 1, -262, -52, -14, -8, 1, -3482, -524, -102, -22, -10, 1, -56902, -6964, -1130, -184, -32, -12, 1, -1099514, -113804, -16326, -2304, -306, -44, -14, 1, -24494422, -2199028, -287882, -37224, -4326, -476, -58, -16, 1, -617906906, -48988844, -5969382, -727928, -78114
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Comments

Column 0 shift left = -2*A107721, where A107721 = column 1 of A107719. Column 1 shift left = 2*(column 0) shift left. Matrix square of A107727.

Examples

			Triangle begins:
1;
-2,1;
-4,-4,1;
-26,-8,-6,1;
-262,-52,-14,-8,1;
-3482,-524,-102,-22,-10,1;
-56902,-6964,-1130,-184,-32,-12,1;
-1099514,-113804,-16326,-2304,-306,-44,-14,1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(L,N,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(M^0-M)^i/i)/3;N=sum(i=0,#L,L^i/i!); return(if(n<0,0,(N^2)[n+1,k+1]))}

A107718 Column 1 of triangle A107717.

Original entry on oeis.org

1, 6, 57, 723, 11361, 212151, 4584081, 112480887, 3090105921, 93988998183, 3136338148017, 113945190405303, 4477940877230625, 189296643095867847, 8565988634172222609, 413169192012610306263, 21161884092470464784385
Offset: 0

Views

Author

Paul D. Hanna, May 30 2005

Keywords

Comments

Equals one-half of column 0 of A107719 shift 1 place left.

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1)[n+2,2])}
Showing 1-8 of 8 results.