Original entry on oeis.org
1, 2, 13, 131, 1741, 28451, 549757, 12247211, 308953453, 8706012827, 271093643293, 9245857326635, 342832527086797, 13733511532751099, 591127774090746493, 27209560375187822795, 1333804962202136755501
Offset: 0
Original entry on oeis.org
1, -1, 1, -3, -2, 1, -21, -7, -3, 1, -219, -53, -13, -4, 1, -2973, -583, -115, -21, -5, 1, -49323, -8249, -1437, -217, -31, -6, 1, -964173, -141655, -22715, -3101, -369, -43, -7, 1, -21680571, -2853185, -430877, -55251, -5975, -581, -57, -8, 1, -551173053, -65887783, -9505707, -1168349, -119137
Offset: 0
Triangle begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1;
-49323,-8249,-1437,-217,-31,-6,1;
-964173,-141655,-22715,-3101,-369,-43,-7,1; ...
-
{T(n,k)=local(L,N,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(M^0-M)^i/i)/3;N=sum(i=0,#L,L^i/i!); return(if(n<0,0,N[n+1,k+1]))}
A107724
Matrix logarithm of triangle A107719, read by rows.
Original entry on oeis.org
0, 1, 0, 4, 2, 0, 31, 10, 3, 0, 343, 88, 19, 4, 0, 4855, 1066, 199, 31, 5, 0, 83209, 16216, 2779, 382, 46, 6, 0, 1670743, 295360, 47791, 6130, 655, 64, 7, 0, 38436673, 6254824, 970849, 119182, 11929, 1036, 85, 8, 0, 996825703, 150917560, 22697647, 2703730
Offset: 0
Triangle begins:
0;
1,0;
4,2,0;
31,10,3,0;
343,88,19,4,0;
4855,1066,199,31,5,0;
83209,16216,2779,382,46,6,0;
1670743,295360,47791,6130,655,64,7,0;
38436673,6254824,970849,119182,11929,1036,85,8,0; ...
-
T(n,k)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i);return(if(n
Original entry on oeis.org
1, 1, 5, 43, 509, 7579, 135341, 2813851, 66733853, 1778159275, 52604224205, 1711276244731, 60729274013309, 2335153500391627, 96727188777453869, 4294441686826824091, 203456100846249179357, 10245810557884742785387
Offset: 0
-
{a(n)=local(E,L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, -polcoeff(1-(1+sum(c=1,m-j,prod(i=0,c-1,3*i+1)*x^c)+x*O(x^(m-j)))^-1,m-j);))))^-1); L=matrix(#M,#M,r,c,if(r>=c,sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i)[r,c])); E=matrix(#L,#L,r,c,if(r>=c,sum(i=0,#L,L^i/3^i/i!)[r,c])); if(n<0,0,E[n+1,1])}
A107725
Column 0 of A107724, which is the matrix logarithm of triangle A107719.
Original entry on oeis.org
0, 1, 4, 31, 343, 4855, 83209, 1670743, 38436673, 996825703, 28778874481, 915636860023, 31837734460129, 1201360385000071, 48899006799783889, 2135779996980897175, 99646497213608842561, 4946194601237466540967
Offset: 0
-
{a(n)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i);return(if(n<0,0,L[n+1,1]/3))}
A107717
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^((3*p-1)/3)) = (3*p-1)*(column p of T), or [T^((3*p-1)/3)](m,0) = (3*p-1)*T(p+m,p) for all m>=1 and p>=0.
Original entry on oeis.org
1, 3, 1, 21, 6, 1, 219, 57, 9, 1, 2973, 723, 111, 12, 1, 49323, 11361, 1713, 183, 15, 1, 964173, 212151, 31575, 3351, 273, 18, 1, 21680571, 4584081, 675489, 71391, 5799, 381, 21, 1, 551173053, 112480887, 16442823, 1732881, 140529, 9219, 507, 24, 1
Offset: 0
SHIFT_LEFT(column 0 of T^(p-1/3)) = (3*p-1)*(column p of T):
SHIFT_LEFT(column 0 of T^(-1/3)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(2/3)) = 2*(column 1 of T);
SHIFT_LEFT(column 0 of T^(5/3)) = 5*(column 2 of T).
Triangle begins:
1;
3,1;
21,6,1;
219,57,9,1;
2973,723,111,12,1;
49323,11361,1713,183,15,1;
964173,212151,31575,3351,273,18,1;
21680571,4584081,675489,71391,5799,381,21,1; ...
Matrix power (2/3), T^(2/3), is A107719 and begins:
1;
2,1;
12,4,1;
114,32,6,1;
1446,364,62,8,1;
22722,5276,854,102,10,1; ...
compare column 0 of T^(2/3) to 2*(column 1 of T).
Matrix inverse cube-root T^(-1/3) is A107727 and begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1; ...
compare column 0 of T^(-1/3) to column 0 of T.
Matrix inverse is A107726 and begins:
1;
-3,1;
-3,-6,1;
-21,-3,-9,1;
-219,-21,-3,-12,1;
-2973,-219,-21,-3,-15,1; ...
compare column 0 of T^(-1) to column 0 of T.
-
{T(n,k)=if(n
-
{T(n,k)=if(n=j,if(m==j,1,if(m==j+1,-3*j,-T(m-j-1,0)))))^-1)[n+1,k+1])}
for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))
Original entry on oeis.org
1, -2, 1, -4, -4, 1, -26, -8, -6, 1, -262, -52, -14, -8, 1, -3482, -524, -102, -22, -10, 1, -56902, -6964, -1130, -184, -32, -12, 1, -1099514, -113804, -16326, -2304, -306, -44, -14, 1, -24494422, -2199028, -287882, -37224, -4326, -476, -58, -16, 1, -617906906, -48988844, -5969382, -727928, -78114
Offset: 0
Triangle begins:
1;
-2,1;
-4,-4,1;
-26,-8,-6,1;
-262,-52,-14,-8,1;
-3482,-524,-102,-22,-10,1;
-56902,-6964,-1130,-184,-32,-12,1;
-1099514,-113804,-16326,-2304,-306,-44,-14,1; ...
-
{T(n,k)=local(L,N,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(M^0-M)^i/i)/3;N=sum(i=0,#L,L^i/i!); return(if(n<0,0,(N^2)[n+1,k+1]))}
Original entry on oeis.org
1, 6, 57, 723, 11361, 212151, 4584081, 112480887, 3090105921, 93988998183, 3136338148017, 113945190405303, 4477940877230625, 189296643095867847, 8565988634172222609, 413169192012610306263, 21161884092470464784385
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m>=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))^-1)[n+2,2])}
Showing 1-8 of 8 results.
Comments