A107726 Matrix inverse of triangle A107717, read by rows.
1, -3, 1, -3, -6, 1, -21, -3, -9, 1, -219, -21, -3, -12, 1, -2973, -219, -21, -3, -15, 1, -49323, -2973, -219, -21, -3, -18, 1, -964173, -49323, -2973, -219, -21, -3, -21, 1, -21680571, -964173, -49323, -2973, -219, -21, -3, -24, 1, -551173053, -21680571, -964173, -49323, -2973, -219, -21, -3, -27, 1
Offset: 0
Examples
Triangle begins: 1; -3,1; -3,-6,1; -21,-3,-9,1; -219,-21,-3,-12,1; -2973,-219,-21,-3,-15,1; -49323,-2973,-219,-21,-3,-18,1; -964173,-49323,-2973,-219,-21,-3,-21,1; ... Matrix inverse is A107717: 1; 3,1; 21,6,1; 219,57,9,1; 2973,723,111,12,1; 49323,11361,1713,183,15,1; ...
Programs
-
PARI
T(n,k)=if(n
=j,if(m==j,1,if(m==j+1,-3*j, polcoeff(1/sum(i=0,m-j,prod(r=0,i-1,3*r+1)*x^i)+O(x^m),m-j)))))[n+1,k+1])
Comments