A107729 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k < 0 or if k > 0; T(n,k) = k*T(n-1,k-1) + (k+2)*T(n-1,k+1).
1, 0, 1, 2, 0, 2, 0, 8, 0, 6, 16, 0, 40, 0, 24, 0, 136, 0, 240, 0, 120, 272, 0, 1232, 0, 1680, 0, 720, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880, 353792, 0
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, 0, 2; 0, 8, 0, 6; 16, 0, 40, 0, 24; 0, 136, 0, 240, 0, 120; 272, 0, 1232, 0, 1680, 0, 720; 0, 3968, 0, 12096, 0, 13440, 0, 5040; 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320; 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880; 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305660, 0, 3628800; ...
References
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 446.
Programs
-
Maple
T:=proc(n,k) if k=-1 then 0 elif n=1 and k=1 then 1 elif k>n then 0 else (k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form [Produces triangle with a different offset] # Emeric Deutsch, Jun 13 2005
Formula
Extensions
More terms from Emeric Deutsch, Jun 13 2005
Additional comments from Philippe Deléham, Sep 17 2005
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
Comments