cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107729 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k < 0 or if k > 0; T(n,k) = k*T(n-1,k-1) + (k+2)*T(n-1,k+1).

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 0, 8, 0, 6, 16, 0, 40, 0, 24, 0, 136, 0, 240, 0, 120, 272, 0, 1232, 0, 1680, 0, 720, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880, 353792, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2005

Keywords

Comments

Triangle is related to the tangent numbers A000182.

Examples

			Triangle begins:
     1;
     0,    1;
     2,    0,    2;
     0,    8,    0,    6;
    16,    0,   40,    0,    24;
     0,   136,   0,   240,    0,   120;
    272,   0,  1232,   0,   1680,   0,    720;
     0,  3968,   0,  12096,   0,  13440,   0,  5040;
   7936,   0,  56320,  0,  129024,  0,  120960,  0,   40320;
     0, 176896,  0, 814080,   0, 1491840,  0, 1209600,  0, 362880;
  353792,  0, 3610112, 0, 12207360, 0, 18627840, 0, 13305660, 0, 3628800;
  ...
		

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 446.

Crossrefs

Similar to A104035. Leading edge is essentially A000182.
Cf. A003707.

Programs

  • Maple
    T:=proc(n,k) if k=-1 then 0 elif n=1 and k=1 then 1 elif k>n then 0 else (k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form [Produces triangle with a different offset] # Emeric Deutsch, Jun 13 2005

Formula

T(n, n) = n!; T(n, 0) = 0 if n = 2m+1; T(n, 0) = A000182(m+1) if n = 2m.
Sum_{k>=0} T(m, k)*T(n, k)*(k+1) = T(m+n, 0).
Sum_{k>=0} T(n, k) = |A003707(n+1)|.

Extensions

More terms from Emeric Deutsch, Jun 13 2005
Additional comments from Philippe Deléham, Sep 17 2005
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar