cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107732 Column 1 of the array in A107735.

Original entry on oeis.org

1, 2, 5, 4, 21, 8, 85, 16, 341, 32, 1365, 64, 5461, 128, 21845, 256, 87381, 512, 349525, 1024, 1398101, 2048, 5592405, 4096, 22369621, 8192, 89478485, 16384, 357913941, 32768, 1431655765, 65536, 5726623061, 131072, 22906492245, 262144, 91625968981, 524288, 366503875925
Offset: 3

Views

Author

N. J. A. Sloane, Jun 10 2005

Keywords

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.

Crossrefs

Programs

  • Mathematica
    Table[(3 (1 + (-1)^n) 2^(n/2) - (1 - (-1)^n) (2 - 2^n))/12, {n, 3, 50}] (* Bruno Berselli, Mar 26 2019 *)
  • PARI
    Vec(x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Mar 26 2019
    
  • SageMath
    def a(n): return (2^n-2)//6 if is_odd(n) else 2^(n//2-1)
    print([a(n) for n in (3..41)]) # Peter Luschny, Mar 26 2019

Formula

a(2*k+2) = 2^k = A000079(k), a(2*k+1) = (4^k-1)/3 = A002450(k) = A001045(2*k).
a(n) = 7*a(n-2) - 14*a(n-4) + 8*a(n-6) for n > 8. - Chai Wah Wu, Jun 19 2016
G.f.: x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5)/(1 - 7*x^2 + 14*x^4 - 8*x^6). - Chai Wah Wu, Jun 19 2016
a(n) = (3*(1 + (-1)^n)*2^(n/2) - (1 - (-1)^n)*(2 - 2^n))/12. - Colin Barker, Mar 26 2019
a(n) = (2^n - 2)/6 if n is odd else 2^(n/2 - 1). - Peter Luschny, Mar 26 2019

Extensions

More terms from Chai Wah Wu, Jun 19 2016