A107732 Column 1 of the array in A107735.
1, 2, 5, 4, 21, 8, 85, 16, 341, 32, 1365, 64, 5461, 128, 21845, 256, 87381, 512, 349525, 1024, 1398101, 2048, 5592405, 4096, 22369621, 8192, 89478485, 16384, 357913941, 32768, 1431655765, 65536, 5726623061, 131072, 22906492245, 262144, 91625968981, 524288, 366503875925
Offset: 3
References
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
Links
- Chai Wah Wu, Table of n, a(n) for n = 3..3324
- Index entries for linear recurrences with constant coefficients, signature (0,7,0,-14,0,8).
Programs
-
Mathematica
Table[(3 (1 + (-1)^n) 2^(n/2) - (1 - (-1)^n) (2 - 2^n))/12, {n, 3, 50}] (* Bruno Berselli, Mar 26 2019 *)
-
PARI
Vec(x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Mar 26 2019
-
SageMath
def a(n): return (2^n-2)//6 if is_odd(n) else 2^(n//2-1) print([a(n) for n in (3..41)]) # Peter Luschny, Mar 26 2019
Formula
a(n) = 7*a(n-2) - 14*a(n-4) + 8*a(n-6) for n > 8. - Chai Wah Wu, Jun 19 2016
G.f.: x^3*(1 + 2*x - 2*x^2 - 10*x^3 + 8*x^5)/(1 - 7*x^2 + 14*x^4 - 8*x^6). - Chai Wah Wu, Jun 19 2016
a(n) = (3*(1 + (-1)^n)*2^(n/2) - (1 - (-1)^n)*(2 - 2^n))/12. - Colin Barker, Mar 26 2019
a(n) = (2^n - 2)/6 if n is odd else 2^(n/2 - 1). - Peter Luschny, Mar 26 2019
Extensions
More terms from Chai Wah Wu, Jun 19 2016