A107733 Column 2 of the array in A107735.
1, 3, 13, 11, 141, 43, 1485, 171, 15565, 683, 163021, 2731, 1707213, 10923, 17878221, 43691, 187223245, 174763, 1960627405, 699051, 20531956941, 2796203, 215013444813, 11184811, 2251650026701, 44739243, 23579585203405, 178956971, 246928622013645, 715827883, 2585870100909261, 2863311531
Offset: 3
Keywords
References
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,17,0,-80,0,128,0,-64).
Programs
-
Mathematica
LinearRecurrence[{0, 17, 0, -80, 0, 128, 0, -64}, {1, 3, 13, 11, 141, 43, 1485, 171}, 32] (* Jean-François Alcover, Oct 22 2019 *)
Formula
a(n) = 1 + Sum_{j=1..g} 2^(2j-1) if n = 2g+2, = 1 + 4 Sum_{j=1..g} C(2g+1, 2j) 5^(j-1) if n = 2g+1.
From Chai Wah Wu, Jun 19 2016: (Start)
a(n) = 17*a(n-2) - 80*a(n-4) + 128*a(n-6) - 64*a(n-8) for n > 10.
G.f.: x^3*(-64*x^7 + 96*x^5 - 40*x^3 - 4*x^2 + 3*x + 1)/(64*x^8 - 128*x^6 + 80*x^4 - 17*x^2 + 1). (End)
Extensions
More terms from Emeric Deutsch, Jun 22 2005
Comments