cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107735 Array read by antidiagonals: A(n,k) = Verlinde numbers for quasiparabolic bundles (n >= 3, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 4, 13, 4, 1, 1, 21, 11, 25, 5, 1, 1, 8, 141, 24, 41, 6, 1, 1, 85, 43, 521, 45, 61, 7, 1, 1, 16, 1485, 160, 1401, 76, 85, 8, 1, 1, 341, 171, 10569, 461, 3101, 119, 113, 9, 1, 1, 32, 15565, 1088, 46649, 1112, 6021, 176, 145, 10
Offset: 3

Views

Author

N. J. A. Sloane, Jun 10 2005

Keywords

Examples

			Array begins:
1 1 1 1 1 1 1 1 1 1 ...
1 2 3 4 5 6 7 8 9 10 ...
1 5 13 25 41 61 85 113 ...
1 4 11 24 45 76 119 ...
1 21 141 521 1401 3101 ...
		

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.

Crossrefs

Programs

  • Maple
    Digits:=100;
    A:=proc(n,k) local kp;
    if (n mod 2) = 1 then
    round( (1/(2*k+1))*add( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*k+2) )^(-n+2), j=0..2*k))
    else kp:=k/2;
    round( (1/(2*kp+1))*add( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*kp+2) )^(-n+2), j=0..2*kp)); fi;
    end;
  • Mathematica
    t[n_, k_] := With[{kp = If[!Divisible[n, 2], k, k/2]}, Round[1/(2*kp+1)*Sum[(-1)^(n*j)*Sin[(2*j+1)*Pi/(4*kp+2)]^(-n+2), {j, 0, 2*kp}]]]; Table[t[n-k, k], {n, 3, 13}, {k, 0, n-3}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Michel Marcus *)
  • PARI
    t(n, k) = {if (! (n % 2), k = k/2); return (round((1/(2*k+1))*sum(j=0, 2*k,(-1)^(n*j)*sin((2*j+1)*Pi/(4*k+2))^(-n+2))));} \\ Michel Marcus, Apr 20 2013

Formula

The reference gives an explicit formula. For odd n this is
A(n,k) = (1/(2*k+1))*sum( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*k+2) )^(-n+2), j=0..2*k). - N. J. A. Sloane, Apr 20 2013.
For even n use the same formula but replace k by k/2. - Michel Marcus, Apr 20 2013