A107749 OrdinaryUnitarySigma(n): If n = Product p_i^r_i then OUSigma(n) = Sigma(2^r_1)*UnitarySigma(n/2^r_1).
1, 3, 4, 7, 6, 12, 8, 15, 10, 18, 12, 28, 14, 24, 24, 31, 18, 30, 20, 42, 32, 36, 24, 60, 26, 42, 28, 56, 30, 72, 32, 63, 48, 54, 48, 70, 38, 60, 56, 90, 42, 96, 44, 84, 60, 72, 48, 124, 50, 78, 72, 98, 54, 84, 72, 120, 80, 90, 60, 168, 62, 96, 80, 127, 84, 144, 68, 126, 96
Offset: 1
Examples
OUSigma(2^4*7^2) = Sigma(2^4)*UnitarySigma(7^2) = 31*50 = 1550.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A107749 := proc(n) local a,f,p,e; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; if p = 2 then a := a*(2^(e+1)-1) ; else a := a*(p^e+1) ; end if; end do; a ; end proc: # R. J. Mathar, Jun 02 2011
-
Mathematica
f[2, e_] := 2^(e+1)-1; f[p_, e_] := p^e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
-
PARI
a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],if(fm[k,1]==2,2^(fm[k,2]+1)-1,fm[k,1]^fm[k,2]+1))
Formula
Multiplicative with a(2^e) = 2^(e+1)-1, a(p^e) = p^e+1 for p>2, e>0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/7) * zeta(2)/zeta(3) = (4/7) * A306633 = 0.781961... . - Amiram Eldar, Nov 01 2022
Dirichlet g.f.: (4^s/(4^s-2)) * zeta(s)*zeta(s-1)/zeta(2*s-1). - Amiram Eldar, Aug 26 2023
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
More terms from R. J. Mathar, Jun 15 2008
Name corrected by Franklin T. Adams-Watters, Aug 24 2013
Comments