cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107758 (+2)Sigma(n): If n = Product p_i^r_i then a(n) = Product (2 + Sum p_i^s_i, s_i=1 to r_i) = Product (1 + (p_i^(r_i+1)-1)/(p_i-1)), a(1) = 1.

Original entry on oeis.org

1, 4, 5, 8, 7, 20, 9, 16, 14, 28, 13, 40, 15, 36, 35, 32, 19, 56, 21, 56, 45, 52, 25, 80, 32, 60, 41, 72, 31, 140, 33, 64, 65, 76, 63, 112, 39, 84, 75, 112, 43, 180, 45, 104, 98, 100, 49, 160, 58, 128, 95, 120, 55, 164
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(6) = (2+2)*(2+3) = 20.
		

Crossrefs

Programs

  • Maple
    A107758 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 1+(op(1,p)^(op(2,p)+1)-1)/(op(1,p)-1), p=pf) ; end if; end proc:
    seq(A107758(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[1, #] &, CoprimeQ[n/#, #] &], {n, 54}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := 1 + (p^(e + 1) - 1)/(p - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 26 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, sigma(d))); \\ Daniel Suteu, Jun 27 2018

Formula

a(n) = Sum_{d|n, gcd(n/d, d) = 1} sigma(d), where sigma(d) is the sum of the divisors of d. - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.0741158... . - Amiram Eldar, Nov 01 2022