cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107760 Expansion of eta(q^3) * eta(q^2)^6 / (eta(q)^3 * eta(q^6)^2) in powers of q.

Original entry on oeis.org

1, 3, 3, 3, 3, 0, 3, 6, 3, 3, 0, 0, 3, 6, 6, 0, 3, 0, 3, 6, 0, 6, 0, 0, 3, 3, 6, 3, 6, 0, 0, 6, 3, 0, 0, 0, 3, 6, 6, 6, 0, 0, 6, 6, 0, 0, 0, 0, 3, 9, 3, 0, 6, 0, 3, 0, 6, 6, 0, 0, 0, 6, 6, 6, 3, 0, 0, 6, 0, 0, 0, 0, 3, 6, 6, 3, 6, 0, 6, 6, 0, 3, 0, 0, 6, 0, 6, 0, 0, 0, 0, 12, 0, 6, 0, 0, 3, 6, 9, 0, 3, 0, 0, 6, 6
Offset: 0

Views

Author

Michael Somos, May 24 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 3*q^4 + 3*q^6 + 6*q^7 + 3*q^8 + 3*q^9 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.42).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); A[1] + 3*A[2]; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 3 Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^3 / (4 EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    QP = QPochhammer; s = QP[q^3]*(QP[q^2]^6/(QP[q]^3*QP[q^6]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X)))[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3), n))};
    
  • PARI
    {a(n) = if ( n<1, n==0, 3 * sumdiv( n, d, kronecker( -12, d)))};
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 3*A[1] # Michael Somos, Sep 27 2013
    

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u^2*w + 4 * v*w^2 - 4 * v^2*w - 2 * u*v*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - 3 * u6 * (u2 - u6).
Expansion of psi(q)^3 / psi(q^3) in powers of q where psi() is a Ramanujan theta function.
Expansion of (a(q) + a(q^2)) / 2 = b(q^2)^2 / b(q) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Aug 30 2008
Euler transform of period 6 sequence [ 3, -3, 2, -3, 3, -2, ...].
Moebius transform is period 6 sequence [ 3, 0, 0, 0, -3, 0, ...]. - Michael Somos, Aug 11 2009
a(n) = 3 * b(n) unless n=0 and b() is multiplicative with b(p^e) = 1 if p=2 or p=3; b(p^e) = 1+e if p == 1 (mod 6); b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6). - Michael Somos, Aug 11 2009
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (27/4)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123330. - Michael Somos, Aug 11 2009
G.f.: (Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k - 1)))^3 / (Product_{k>0} (1 - x^(6*k)) / (1 - x^(6*k - 3))). - Michael Somos, Aug 11 2009
a(n) = 3 * A035178(n) unless n=0. a(n) = (-1)^n * A132973. a(2*n) = a(3*n) = a(n). a(6*n + 5) = 0. a(2*n + 1) = 3 * A033762. a(3*n + 1) = 3 * A033687(n). a(4*n + 1) = 3 * A112604(n). a(4*n + 3) = 3 * A112605(n). a(6*n + 1) = 3 * A097195(n). Convolution inverse of A132979.
a(8*n + 1) = 3 * A112606(n). a(8*n + 3) = 3* A112608(n). a(8*n + 5) = 6 * A112607(n-1). a(8*n + 7) = 6 * A112609(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3)/2 = 2.720699... . - Amiram Eldar, Dec 28 2023