A107769 a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.
0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63, eq 25).
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).
Programs
-
Mathematica
Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
-
Sage
[(lucas_number2(n+2,2,-1) -4*lucas_number1(2+(n//2),2,-1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021
Formula
4*a(n) = Pell(n+3) - Pell(n+2) - 2*Pell(floor((n+4)/2)) + 1, with Pell(n) = A000129(n). - Ralf Stephan, Jun 02 2007
G.f.: x*(1-x+x^2)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)). - Colin Barker, Apr 08 2013
From G. C. Greubel, May 24 2021: (Start)
Extensions
Entry revised by N. J. A. Sloane, Jul 29 2011
Comments