cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107769 a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.

Original entry on oeis.org

0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

a(n) is the number of free polyominoes of width 2 and height n+1 which have no symmetry, i.e., rotations by 180 degrees, flips along the short or long axis generate a different free polyomino. The three elements t, g+ and g- of sequences by Tasi et al. represent a domino in the short cross-section where either both, only the "upper" or only the "lower" square of the domino is occupied. E.g., a(3) = 8 represents 3 5-ominoes of shape the 2x4, 3 6-ominoes of shape 2x4, and 2 7-ominoes of shape 2x4. - R. J. Mathar, Jun 17 2020

Crossrefs

Programs

  • Mathematica
    Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [(lucas_number2(n+2,2,-1) -4*lucas_number1(2+(n//2),2,-1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

4*a(n) = Pell(n+3) - Pell(n+2) - 2*Pell(floor((n+4)/2)) + 1, with Pell(n) = A000129(n). - Ralf Stephan, Jun 02 2007
G.f.: x*(1-x+x^2)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)). - Colin Barker, Apr 08 2013
4*a(n) = A001333(n+2) -2*A135153(n+4) +1. - R. J. Mathar, Jun 17 2020
From G. C. Greubel, May 24 2021: (Start)
a(n) = (1/4)*(A001333(n+2) - 2*A000129(floor(n/2)+2) + 1).
a(n) = (1/8)*(A002203(n+2) - 4*A000129(floor(n/2)+2) + 2). (End)

Extensions

Entry revised by N. J. A. Sloane, Jul 29 2011