A107876 Triangular matrix T, read by rows, that satisfies: [T^k](n,k) = T(n,k-1) for n>=k>0, or, equivalently, (column k of T^k) = SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored.
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 7, 7, 3, 1, 1, 37, 37, 15, 4, 1, 1, 268, 268, 106, 26, 5, 1, 1, 2496, 2496, 975, 230, 40, 6, 1, 1, 28612, 28612, 11100, 2565, 425, 57, 7, 1, 1, 391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1, 6230646, 6230646, 2401365, 544423
Offset: 0
Examples
G.f. for column 1: 1 = T(1,1)*(1-x)^1 + T(2,1)*x*(1-x)^2 + T(3,1)*x^2*(1-x)^4 + T(4,1)*x^3*(1-x)^7 + T(5,1)*x^4*(1-x)^11 + T(6,1)*x^5*(1-x)^16 +... = 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 +... G.f. for column 2: 1 = T(2,2)*(1-x)^1 + T(3,2)*x*(1-x)^3 + T(4,2)*x^2*(1-x)^6 + T(5,2)*x^3*(1-x)^10 + T(6,2)*x^4*(1-x)^15 + T(7,2)*x^5*(1-x)^21 +... = 1*(1-x)^1 + 1*x*(1-x)^3 + 3*x^2*(1-x)^6 + 15*x^3*(1-x)^10 + 106*x^4*(1-x)^15 + 975*x^5*(1-x)^21 +... Triangle T begins: 1; 1, 1; 1, 1, 1; 2, 2, 1, 1; 7, 7, 3, 1, 1; 37, 37, 15, 4, 1, 1; 268, 268, 106, 26, 5, 1, 1; 2496, 2496, 975, 230, 40, 6, 1, 1; 28612, 28612, 11100, 2565, 425, 57, 7, 1, 1; 391189, 391189, 151148, 34516, 5570, 707, 77, 8, 1, 1; ... where column 1 of T = SHIFT_LEFT(column 0 of T). Matrix square T^2 begins: 1; 2, 1; 3, 2, 1; 7, 5, 2, 1; 26, 19, 7, 2, 1; 141, 104, 37, 9, 2, 1; 1034, 766, 268, 61, 11, 2, 1; ... Compare column 2 of T^2 with column 1 of T. Matrix inverse begins: 1; -1, 1; 0, -1, 1; 0, -1, -1, 1; 0, -3, -2, -1, 1; 0, -15, -9, -3, -1, 1; 0, -106, -61, -18, -4, -1, 1; ... Compare column 1 of T^-1 with column 2 of T and compare column 2 of T^-1 with column 3 of T^2.
Links
- Alois P. Heinz, Rows n = 0..50, flattened
Crossrefs
Programs
-
Mathematica
max = 10; A107862 = Table[Binomial[If[n
A107867 = Table[Binomial[If[n A107862].A107867; Table[t[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after first comment, fixed by Vaclav Kotesovec, Jun 13 2018 *) -
PARI
{T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)} for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))
-
PARI
/* Print the Triangular Matrix to the Power p: */ {T(n,k,p)=polcoeff(1- sum(j=0,n-k-1,T(j+k,k,p)*x^j*(1-x+x*O(x^n))^(j*(j-1)/2+j*k+p)),n-k)} for(n=0,10,for(k=0,n,print1(T(n,k,1),", ")); print(""))
Formula
G.f. for column k of T^m, the m-th matrix power of this triangle T:
(1) 1 = Sum_{j>=0} T(k+j, k) * x^j * (1-x)^(1+(k+j)*(k+j-1)/2-k*(k-1)/2) for m=1.
(2) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j*(1-x)^(m+(k+j)*(k+j-1)/2-k*(k-1)/2) for all m and k>=0.
(3) 1 = Sum_{j>=0} [T^m](k+j, k)*x^j / C(x)^(m-j+(k+j)*(k+j-1)/2-k*(k-1)/2) where C(x)=2/(1+sqrt(1-4*x)) is g.f. for A000108 (Catalan numbers).
Matrix inverse of this triangle T satisfies:
(4) [T^-1](n,k) = -[T^k](n,k+1) for n>k>=0.
Comments