A107904 Expansion of (1+6x)/(1-12x^2).
1, 6, 12, 72, 144, 864, 1728, 10368, 20736, 124416, 248832, 1492992, 2985984, 17915904, 35831808, 214990848, 429981696, 2579890176, 5159780352, 30958682112, 61917364224, 371504185344, 743008370688, 4458050224128, 8916100448256, 53496602689536, 106993205379072
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,12).
Programs
-
Mathematica
LinearRecurrence[{0,12},{1,6},30] (* Harvey P. Dale, Sep 22 2014 *)
Formula
a(n) = ((1+sqrt(3))*(2*sqrt(3))^n + (1-sqrt(3))*(-2*sqrt(3))^n)/2.
a(2n) = 12^n, a(2n+1) = 6*12^n.
a(n) = 2^n*A108411(n+1). - R. J. Mathar, Aug 15 2023
From Amiram Eldar, Dec 06 2024: (Start)
Sum_{n>=0} 1/a(n) = 14/11.
Sum_{n>=0} (-1)^n/a(n) = 10/11. (End)
Comments