A107954 Number of chains in the power set lattice, or the number of fuzzy subsets of an (n+4)-element set X_(n+4) with specification n elements of one kind, 3 elements of another and 1 of yet another kind.
79, 527, 2415, 9263, 31871, 101759, 307455, 890111, 2490367, 6774783, 18001919, 46886911, 120029183, 302678015, 753205247, 1852375039, 4507828223, 10866393087, 25970081791, 61583917055, 144997089279, 339159810047
Offset: 0
Examples
a(2) = 8 * ( (16 + 184)/6 + (316 + 370)/3 + 40 ) - 1 = 2415. This is the number of fuzzy subsets of a set of (2+4) elements of which 2 are of one kind, 3 are of another kind and 1 of a kind distinct from the other two.
References
- V. Murali, On the enumeration of fuzzy subsets of X_(n+4) of specification n^1 3^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 12 pages 2005.
Links
- Venkat Murali, Home page.
- Index entries for linear recurrences with constant coefficients, signature (11,-50,120,-160,112,-32).
Programs
-
Mathematica
a[n_] := 2^n(n^4 + 23n^3 + 158n^2 + 370n + 240)/3 - 1; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, May 31 2005 *) LinearRecurrence[{11,-50,120,-160,112,-32},{79,527,2415,9263,31871,101759},40] (* Harvey P. Dale, Aug 15 2025 *)
Formula
a(n) = 2^(n+1)*( (n^4 + 23*n^3)/6 + (79*n^2 + 185*n)/3 + 40 ) - 1.
G.f.: (128*x^4-432*x^3+568*x^2-342*x+79) / ((x-1)*(2*x-1)^5). [Colin Barker, Dec 10 2012]
Extensions
a(6)-a(21) from Robert G. Wilson v, May 31 2005
Comments