cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107961 Pythagorean semiprimes: products of two Pythagorean primes (A002313).

Original entry on oeis.org

4, 10, 25, 26, 34, 58, 65, 74, 82, 85, 106, 122, 145, 146, 169, 178, 185, 194, 202, 205, 218, 221, 226, 265, 274, 289, 298, 305, 314, 346, 362, 365, 377, 386, 394, 445, 458, 466, 481, 482, 485, 493, 505, 514, 533, 538, 545, 554, 562, 565, 586, 626, 629, 634
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2005

Keywords

Comments

Fermat's 4n+1 theorem, sometimes called Fermat's two-square theorem or simply "Fermat's theorem," states that a prime number p can be represented in an essentially unique manner (up to the order of addends) in the form x^2 + y^2 for integer x and y iff p = 1 (mod 4) or p = 2 (which is a degenerate case with x = y = 1). The theorem was stated by Fermat, but the first published proof was by Euler.

References

  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 146-147 and 220-223, 1996.
  • Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 13 and 219, 1979.
  • Seroul, R. "Prime Number and Sum of Two Squares." Section 2.11 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 18-19, 2000.

Crossrefs

Formula

{a(n)} = {p*q: p and q both elements of A002313} = {p*q: p and q both of form m^2 + n^2 for integers m, n}.