cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107980 Triangle read by rows: T(n,k) = (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24.

Original entry on oeis.org

1, 5, 9, 14, 30, 40, 30, 70, 105, 125, 55, 135, 216, 280, 315, 91, 231, 385, 525, 630, 686, 140, 364, 624, 880, 1100, 1260, 1344, 204, 540, 945, 1365, 1755, 2079, 2310, 2430, 285, 765, 1360, 2000, 2625, 3185, 3640, 3960, 4125, 385, 1045, 1881, 2805, 3740, 4620, 5390, 6006, 6435, 6655
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

Examples

			Triangle begins:
    1;
    5,    9;
   14,   30,   40;
   30,   70,  105,  125;
   55,  135,  216,  280,  315;
   91,  231,  385,  525,  630,  686;
  140,  364,  624,  880, 1100, 1260, 1344;
  204,  540,  945, 1365, 1755, 2079, 2310, 2430;
  285,  765, 1360, 2000, 2625, 3185, 3640, 3960, 4125;
  385, 1045, 1881, 2805, 3740, 4620, 5390, 6006, 6435, 6655;
  506, 1386, 2520, 3800, 5130, 6426, 7616, 8640, 9450, 10010, 10296;
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,3,l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then 1/24*(n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3) else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= (1/6)*(n+2)*Binomial[k+2, 2]*Binomial[2*n-k+3, 2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 14 2021 *)
  • Sage
    def A107980(n,k): return (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24
    flatten([[A107980(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 14 2021

Formula

T(n, k) = (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24.
T(n, 0) = A000330(n+1).
T(n, n) = A006414(n).
Sum_{k=0..n} T(n, k) = A006858(n+1).
T(n, n-1) = 5*binomial(n+4, 5) = 5*A000389(n+4). - G. C. Greubel, Dec 14 2021