cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107984 Triangle read by rows: T(n,k) = (k+1)*(n+2)*(2n-k+3)*(n-k+1)/6 for 0 <= k <= n.

Original entry on oeis.org

1, 5, 4, 14, 16, 10, 30, 40, 35, 20, 55, 80, 81, 64, 35, 91, 140, 154, 140, 105, 56, 140, 224, 260, 256, 220, 160, 84, 204, 336, 405, 420, 390, 324, 231, 120, 285, 480, 595, 640, 625, 560, 455, 320, 165, 385, 660, 836, 924, 935, 880, 770, 616, 429, 220, 506, 880
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A000330. Main diagonal yields A000292. Row sums yield A006414.

Examples

			Triangle begins:
   1;
   5,  4;
  14, 16, 10;
  30, 40, 35, 20;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(n+2)*(2*n-k+3)*(n-k+1)/6 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • PARI
    A107984_row(n)=vector(n+1,k,k*(2*n-k+4)*(n-k+2))*(n+2)/6 \\ M. F. Hasler, Dec 26 2016

Formula

T(n-2,k-1) = n*(2*n-k)*(n-k)*k/6. - M. F. Hasler, Dec 26 2016
G.f.: (1 + x - 4*x^2*y + x^3*y^2 + x^4*y^2)/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 11 2025