A107996 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y odd.
5, 13, 21, 29, 45, 53, 61, 69, 77, 85, 93, 109, 117, 125, 133, 149, 157, 165, 173, 181, 205, 213, 221, 229, 237, 245, 253, 261, 277, 285, 293, 301, 309, 317, 341, 357, 365, 397, 413, 421, 429, 437, 445, 453, 461, 469, 477, 493, 501, 509, 517, 525, 533, 541
Offset: 1
Keywords
Links
- F. Arndt, Beiträge zur Theorie der quadratischen Formen, Archiv der Mathematik und Physik 15 (1850) 467-478.
- A. Cayley, Note sur l'équation x^2 - D*y^2 = +-4, D=5 (mod. 8), J. Reine Angew. Math. 53 (1857) 369-371.
- Steven R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
- N. Ishii, P. Kaplan and K. S. Williams, On Eisenstein's problem, Acta Arith. 54 (1990) 323-345.
- Wolfdieter Lang, Periods of Indefinite Binary Quadratic Forms, Continued Fractions and the Pell +/-4 Equations.
Crossrefs
Cf. A079896.
Comments