cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108038 Triangle read by rows: g.f. = (x+y+x*y)/((1-x-x^2)*(1-y-y^2)).

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 2, 4, 4, 2, 3, 7, 5, 7, 3, 5, 11, 9, 9, 11, 5, 8, 18, 14, 16, 14, 18, 8, 13, 29, 23, 25, 25, 23, 29, 13, 21, 47, 37, 41, 39, 41, 37, 47, 21, 34, 76, 60, 66, 64, 64, 66, 60, 76, 34, 55, 123, 97, 107, 103, 105, 103, 107, 97, 123, 55, 89, 199, 157, 173, 167, 169, 169, 167
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2005

Keywords

Comments

Start with 3 rows 0; 1 1; 1 3 1; then rule is each entry is maximum of sum of two entries diagonally above it to the left or to the right. Borders are Fibonacci numbers (A000045).

Examples

			Triangle begins:
      k=0  1  2  3  4
  n=0:  0;
  n=1:  1, 1;
  n=2:  1, 3, 1;
  n=3:  2, 4, 4, 2;
  n=4:  3, 7, 5, 7, 3;
  ...
		

Crossrefs

Cf. A000045, A067331 (row sums).

Programs

  • Mathematica
    Block[{nn = 11, s}, s = Series[(x + y + x*y)/((1 - x - x^2)*(1 - y - y^2)), {x, 0, nn}, {y, 0, nn}]; Table[Function[m, SeriesCoefficient[s, {m, k}]][n - k], {n, 0, nn}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Dec 04 2020 *)
    G[n_,k_] := Fibonacci[k]*Fibonacci[n-k+1]; T[n_,k_]:= G[n+2,k+1]-G[n,k]; RowPointHosoya[n_] := Table[Inset[T[n,i+1], {1-n+2i,1-n}], {i,0,n-1}]; T[n_] := Graphics[ Flatten[Table[RowPointHosoya[i], {i,1,n}],1]]; Manipulate[T[n], Style["Determinant Hosoya Triangle",12,Red], {{n,6,"Rows"}, Range[12]}, ControlPlacement -> Up] (* Rigoberto Florez, Feb 07 2022 *)

Formula

From Rigoberto Florez, Feb 08 2022: (Start)
T(n,k) = F(k+2)*F(n-k+2) - F(k+1)*F(n-k+1), where F(n) = Fibonacci(n) = A000045(n).
T(n,k) = F(k)*F(n-k+2) + F(k+1)*F(n-k), where F(n) = Fibonacci(n).
T(n,k) = T(n-1,k) + T(n-2,k) and T(n,k) = T(n-1,k-1) + T(n-2,k-2), where T(1,1) = 0, T(2,1) = T(2,2) = 1, and T(3,2) = 3.
G.f: (x + x*y + x^2*y)/((1 - x - x^2)*(1 - x*y - x^2*y^2)). (End)